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KINEMATICS OF GEOMAGNETIC SECULAR VARIATION IN A
PERFECTLY CONDUCTING CORE

By G. E. BACKUS

Institute of Geophysics and Planetary Physics and Scripps Institution of Oceanography,
University of California, San Diego
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The motions in the Earth’s electrically conducting fluid core which are the probable cause of
the geomagnetic secular variations have time scales of the order of a few centuries or less. Seismic
bounds on the kinematic molecular viscosity of the core and order-of-magnitude arguments
about the eddy viscosity make plausible the hypothesis that at such short periods the core motion
consists of a boundary layer of Ekman—Hartmann type close to the core mantle boundary, and an
interior free-stream motion where the viscosity and resistivity can be set equal to zero. This
boundary-layer approximation requires that the unknown vertical length scale of the poloidal geo-
magnetic field deep in the core be at least as long as the 600 km horizontal length scales inferred at
the surface of the core from observations above the mantle. For periods shorter than a century the
Ekman and magnetic boundary layers are probably thinner than 120 km.

If magnetic flux diffusion is neglected (i.e. if electrical conductivity is considered infinite)
in the free stream in the core then the external geomagnetic field is completely determined by
the fluid motion at the top of the free stream. Therefore the hypothesis of negligible flux diffusion
in the free stream has implications for the geomagnetic secular variation, and these implications
can be used as a test of whether there is any motion of a perfectly conducting core which will
produce the observed secular variation. If the observed secular variation passes this test, we can
write down explicitly all ¢ eligible’ velocity fields, i.e. all velocity fields at the top of the free stream in
the core which are capable of producing exactly the observed secular variation. The different
eligible velocity fields are obtained by different choices of an arbitrary stream function on the
surface of the core. We describe a method of selecting from among all eligible velocity fields those
which are of particular geophysical interest, such as the one which is most nearly a rigid rotation
(westward drift) or the one which is most nearly a latitude dependent westward drift with m degrees
of freedom.
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240 G. E. BACKUS

1. InTRODUCTION

This paper is an examination of what can be learned about the motions of the fluid near
the surface of the Earth’s core from the geomagnetic secular variations with time scales
of a century or less. Secular variations with time scales shorter than three or four years are
strongly attenuated by the conductivity of the mantle (McDonald 1957; Gurric 1967),
so the time scales of interest lie between 4 and 100 y. For longer time scales, flux diffusion
is almost certainly important in the core, but Roberts & Scott (1965) argue that for the
time scales considered here the core advects the geomagnetic field as a perfect conductor,
except of course in thin boundary layers at the surface of the core. This picture attributes
magnetic secular variations with time scales shorter than a century to magnetic flux
advection by the motion of the core fluid in the free stream just below the boundary layers.

Allan & Bullard (1958, 1966) suggest that even on the decade time scale an important
cause of secular variation is the upwelling of fluid near the surface of the core, with
consequent ejection of magnetic flux by diffusion. The question at issue between Hide,
Roberts and Scott and Allan & Bullard is whether in fact the toroidal field and the up-
wellings of fluid are sufficiently strong to produce the observed secular variation. In the
absence of a good understanding of the dynamics of the core we might hope to examine this
question empirically.

Kahle, Ball & Vestine (1967) have adopted the hypothesis of Hide, Roberts and Scott

and have attempted to use the secular variation to determine the velocity of the fluid
near the surface of the core. They point out that in principle the method cannot give the
fine-scale structure of the velocity field, since the corresponding magnetic Reynolds
numbers are too small to permit neglecting flux diffusion in the core. In any case the fine
details of the magnetic field at the surface of the core cannot be obtained from information
at the top of the mantle as long as experimental errors are not exactly zero. This latter
problem is well understood. Consider a harmonic vector field without external sources,
whose potential has the angular dependence of a spherical harmonic order /. If it has mag-
nitude M at the surface of the earth, its magnitude at the core-mantle boundary is
M(a/b)"*2 where a is the outer and 4 the inner radius of the mantle. (Here we assume the
mantle to be an insulator; mantle conductivity increases the amplification with depth.)
Therefore, for any particular fractional error ¢ in the measurement of the geomagnetic
field B outside the mantle, our direct observational information about B at the core-
mantle boundary is confined to angular orders / which are less than the cutoff /, given
roughly by I.+2% (In ¢-1)/In (afb).
Within these limits Kahle ef al. (1967) and Booker (1968) find that they can extrapolate
B and ¢, B, the time derivative of B, from the surface of the earth to the surface of the
core. We shall assume that this extrapolation has been accomplished, recognizing that
fine-scale detail is neither obtainable nor amenable to discussion in a perfectly conducting
model of the core.

In the present paper, then, we assume that the geomagnetic field B and its secular
variation, d,B, are observable just above the surface of the fluid core. We examine the
viscous and magnetic boundary layers in the core at its boundary with the mantle, in


http://rsta.royalsocietypublishing.org/

s |
PN

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

KINEMATICS OF GEOMAGNETIC SECULAR VARIATION 241

order to learn how accurately our ‘ observed ’ values of B and d,B just outside the core
reflect the values at the top of the free stream, where we hope to get velocity information.
Assuming that the fluid in the free stream is a perfect conductor, we deduce relations
which must hold between B and d, B if the velocity of the free stream is continuous. Failure
of these relations means that J, B cannot be obtained from B by any continuous motion
of a perfectly conducting fluid; flux diffusion must be important. If B and J,B pass
these tests then there is a very large class of ‘eligible’ velocity fields v at the top of the
free stream in the core which are continuous and can exactly reproduce d,B from B.

Thus the goal which Kahle ¢t al. have set themselves is in principle unattainable. We
show that it is, nonetheless, possible to use the observations of secular variation to answer
questions about the fluid velocity at the top of the free streain in the core, if we accept the
hypothesis of Hide, Roberts and Scott and frame the questions in a manner which takes
explicit account of the multiplicity of eligible velocity fields.

2. LENGTH SCALES TOO SHORT FOR PERFECT CONDUCTIVITY
It is well known (see, for example, Backus 1958) that the magnetic field produced by
electric currents in a sphere of radius R is the sum of a toroidal field which vanishes out-
side the sphere and a poloidal field which does not. The poloidal field is a superposition
of multipole fields P,,,, which have the form

len = VX (r X Vplmn)'
When r < R the scalar is Pimn = Ji(01,,7[R) Y72(0, A), (1)

Here r is the radius vector from the centre of the sphere, and 7, 6, A are radius, colatitude,
and longitude; Y7 is the surface spherical harmonic of total angular order / with longi-
tude dependence e'™, j, is the spherical Bessel function of order /, and o, , is its nth
positive zero.

Mie (1908) has shown that in a rigid sphere with constant electrical conductivity ¢ and
radius R the poloidal and toroidal multipole modes decay independently and exponentially
with mean lives independent of m. The mean life of mode (1) is

m =t URZ/(“Z—-l,n)Q
where g, is the magnetic permeability of free space.
If we expand the geomagnetic poloidal field in the form

P = % % é Almn(t) len(r> 6’3 /1)

n=11=1 m=-

dAlmn . Almn
then ‘—d_t“‘ - T _}_ﬁmiw

in

where the free-decay term, 4,,,/7,,, represents flux diffusion out of the mode P,,,
while the term f;,, which vanishes for a rigid core, represents transfer of flux into the
mode P, by the velocity field (Elsasser 1946). In discussing the behaviour of 4,,,,(t) over
time intervals of length 7" we certainly cannot neglect flux diffusion if 7;, < 7. If we
are to treat the core as a perfect conductor for a period as long as 100 y we must restrict
attention to those P, which have 7;, > 300y, or perhaps 7,, > 1000 y.

Imn

30-2
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242 G. E. BACKUS

After a review of the literature, Tozer (1958) reports that o = 3 x 105> mho/m within
a factor of 3. We adopt Tozer’s estimate throughout this paper. Then 7;, > 1000 years
requires a;_; , < 11-8, while 7;, > 300 y requires o, ; , < 21-5. Figure 1 shows these two
admissible sets of modes.
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Ficure 1. Values of total angular order / and radial order z such that the free decay time of the geo-
magnetic poloidal mode P,,, is at least 300 years. Circled dots have a decay time of at least
1000 years. The electrical conductivity of the core is taken as 3 x 105 mho/m.

How serious are the restrictions implied by figure 1? Of course we have no direct in-
formation about the variation of B with 7 in the core, so we cannot assess the importance
of the limitation on n. The limitation on / can be compared with the amplitudes of the
spherical harmonics in the external field. Cain, Hendricks, Langell & Hudson (1967) have
obtained those amplitudes up to / = 10 from surface and satellite observations. Extra-
polating these harmonics to the core-mantle boundary on the assumption that the mantle
is an insulator, Booker (1968) finds that most of the horizontal variation in B for / < 10
on the surface of the core is accounted for by angular orders with / < 6. Therefore figure 1
does not rule out the possibility of treating the core as a perfect conductor in a discussion
of the Fourier amplitudes of the secular variation with periods shorter than 100 years.

On the surface of the core the angular order / = 6 corresponds to a horizontal length
scale L, of about one sixth of the core radius. i.e. about 600 km.

The necessary conditions for neglecting flux diffusion, summarized in figure 1, are by
no means sufficient. Allan & Bullard (1958, 1966) have shown that sufficiently rapid up-
welling of fluid in a sufficiently strong toroidal field can eject flux by diffusion rapidly
enough to explain the whole secular variation. Cox & Dalrymple (1967) find that the main
field probably reverses in less than 5000y, passing close to zero in the process; this reversal
can be accomplished only by flux diffusion and requires that in the core the main dipole
field have a higher radial mode than n = 1. Dagley et al. (1967) find evidence that the
reversal time may be 15000 years. The present paper is an examination of what can be said
about the secular variation between reversals if in fact flux diffusion is then negligible in
the free stream of the core for periods shorter than a century.

3. THE BOUNDARY LAYERS
The core model we consider consists of a free-stream motion with a length scale
L = 600 km or greater, in which the fluid behaves as if perfectly conducting and non-
viscous; and in addition thin layers at the core-mantle boundary where the motion of the
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KINEMATICS OF GEOMAGNETIC SECULAR VARIATION 243

free stream is modified by resistivity and viscosity to fit the boundary conditions which
the free stream cannot meet. In subsequent sections we examine the free stream. In the
present section we intend to study the boundary layers and in particular to verify «
posteriori that they are considerably thinner than L. We restrict attention to those Fourier
components of the secular variation which have periods between 4 and 100 y. They are
slow enough to penetrate the mantle and fast enough that figure 1 does not refute our
model at the outset.

Greenspan & Howard (1963) have shown that in addition to boundary layers, viscosity
produces a small ‘spin-up’ throughout the core (a transfer of angular momentum by
pressure-driven advection). Since we do not examine the dynamics of the free stream we
can regard this spin-up as part of the free-stream motion.

Proceeding as usual in a boundary layer theory, we choose a quasi-cubical region Q
one of whose faces is part of the core mantle boundary and whose diameter is much larger
than the boundary layer thicknesses and much less than L. Then in @ the core/mantle
boundary is nearly plane and the free-stream velocity and magnetic field are nearly con-
stant, while the velocity and magnetic field in the boundary layers are functions mainly
of time and the normal distance from the boundary. To study these boundary layers we
assume we know the free-stream motion, and we introduce an accelerated reference frame
which moves with the free stream in Q. In this frame we have a hydromagnetic Rayleigh
problem: what is the motion of a fluid of density p, kinematic viscosity v, and magnetic
diffusivity ¥ = (g, 0)~! which fills the three-dimensional half-space z > 0, if the fluid is
at rest at z = 400 and the x-y plane is a rigid boundary moving tangentially in a known
fashion. A magnetic field is present which is constant at z = 4-00 and interacts with the
fluid motion. We neglect compressibility in the core.

To solve Rayleigh’s problem we write the total magnetic field as

B = B,+(Z.B,) b(z, ?)
where B, is constant, Z is the unit vector in the direction of increasing z, and b is a

dimensionless form of the perturbation in the magnetic field produced by the motion of the
boundary. We define A= (2.By) (yp)*

the Alfvén speed normal to the boundary, and we write the fluid velocity as 4v(z, ¢).
We assume that b and v are independent of x and y. Then from V.v == 9 and V.b = 0
we deduce that Z.v and Z.b are independent of z. The boundary condition 2.v = 0
at z = 0 and, if necessary, and appropriate redefinition of B,, permit us to infer that
b.Z and v.Zz vanish for all positive z at all times.

We denote by f the local Coriolis parameter, 2Z.R, where @ is the angular velocity
of rotation of the Earth. Then f = 20 cos # where 6 is geographic colatitude.

In the simple Rayleigh geometry the exact equations of motion and magnetic variation

are OVHfLXV = 49, b+v v, 0
db = A3, v+kdb.| @)
Following the usual procedure in boundary layer theory, we want to solve (2) for v

and b using boundary conditions obtained from the free stream. We consider only the
steady problem, where the time variations are of the form e, with o real and constant.
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244 G. E. BACKUS

We need four vector boundary conditions to specify a solution of (2). Two of these we
already have: b and v must vanish at z = +oo0. A third condition is that at z = 0 the
fluid velocity 4v must be the velocity of the rigid boundary relative to the free stream, a
velocity which, in this boundary layer calculation, we assume is known. What is the
fourth vector boundary condition?

To find it we must re-examine the whole free-stream problem in the spherical configura-
tion. We assume that the free-stream angular frequencies o under discussion are small
enough to permit treating the mantle as an insulator. Let V be the spherical (or topo-
logically spherical) region occupied by the perfectly conducting fluid. Let dV be its bound-
ary and let i be the outward unit normal to V. (Thus fi = —2 in the boundary layer
problem.) Inside V the magnetic field at any fluid point is completely determined by its
initial value there and by the spatial gradient of the fluid displacement at that point
(Cowling 1957). From Maxwell’s equations, fi. B must be continuous across V. Outside
V, B is the gradient of a potential which vanishes at infinity. To determine this potential
from n.B on dV is an exterior Neumann problem, which has a unique solution. In fine,
the fluid displacement determines fi X B just outside and just inside ¥ in quite different
ways, and a general displacement of the fluid will usually produce a discontinuity in i x B
at dV. This jump (outer value minus inner value) in i x B is the value which must be
assigned to (B,.Z) b at z = 0 in solving (2). It is our fourth vector boundary condi-
tion and, unlike the other three, is obtained from the global rather than the local properties
of the free stream.

We will need a rough estimate of the relative sizes of b(0) and v(0). The foregoing
paragraphs shows that (B,.2) b(0) is of the same order of magnitude as the change
produced in the free-stream value of 1. B on dV by the free-stream fluid displacement
there. For a free-stream Fourier component with period 27/|w| seconds, this displace-
ment is Av(0)/|w|, and it produces in fi.B a change C'|w|~14v(0).V (0. B) where C’
is a dimensionless number of the order of or less than unity. Here V; is the tangential
gradient operator on dV: Vg = V—n(n.V). Thus

(B,y.2) b(0) ~ C"|w|"14v(0).V4(na.B),
where C” is another dimensionless constant less than or of the order of 1. But
B,.2 =—0.B and |Vi(@.B)/(n.B)| ~ L7,
where L, is the horizontal length scale of the free stream. Thus,

w—é; [v(0)], (3)
where 4Av(0) and (B,.Z) b(0) are the boundary values in the Rayleigh problem (2),
and therefore the velocity and the discontinuity in fix B produced on @V by the free-
stream motion. The dimensionless constant C is of the order of or less than unity, and is
a sort of shape factor for the displacement. If the displacement is a pure rigid rotation of
the whole fluid, C vanishes (Backus 1958).

Roberts & Scott (1965) argue that the Lorentz force on the surface current entailed by
a discontinuity in fi x B at JV will alter the free-stream motion so as to eliminate the dis-
continuity, so that we must take b(0) = 0 in solving (2). I believe that their argument

b(0)| = C



http://rsta.royalsocietypublishing.org/

s |
PN

/

AL

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

I B

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

KINEMATICS OF GEOMAGNETIC SECULAR VARIATION 245

requires values of fi. B considerably larger than those present in the Earth’s core, but a
discussion is postponed to Appendix IT because in either case we now have enough bound-
ary conditions to solve (2).

Hide & Roberts (1960) solve (2) for all possible values of the parameters. For the earth’s
core we can specialize and simplify the discussion slightly. We consider a Fourier com-
ponent of the free-stream motion whose time variation is e7* where w is a real positive or
negative constant such that 27/|w| lies between 4 and 100 y. Equations (2) are four equa-
tions for the four unknown complex components v b,, b,. We define four new variables,

% y) x
Vi, U_y b, b_ as follows: b, = v,+im,

b, = v +irb,,
with 7 = +1 or —1. Then the four equations (2) decouple into two pairs, one pair for
7 = +1 and one pair for 7 = —1:

v &2+i(0—1f)] 0,4+ 43,5, — 0,
Adv, +[kZ+iw] b, = 0.
For each fixed 7, any solution &, v, is a linear combination of four particular solutions

with z-dependence exp (—n,z). The four complex decay constants n_ are the four roots of
the secular equation

(- ()2 i (T0) i (&) ]+ 2 =,

We are interested only in the two roots with positive real part, because our solutions
b,, v, must vanish at z = - c0. We label these two roots as n,, and n
the labels v and « will be specified later.
To summarize, for each fixed angular frequency o there are associated with (2) four
complex constants, n,,, n,_, n,,, n,_, and to each of these constants corresponds a boundary
layer. The thicknesses of the four boundary layers are (%n,,)", (%n,_)"!, (%n,,)"! and
(Z%n,_)~! where # denotes real part. The two boundary layers corresponding to n,, and
n,. will be called Ekman layers, while those corresponding to 7, and n,__ will be called
magnetic boundary layers. The question at issue is whether all four of these boundary
layer thicknesses are considerably less than L, the length scale of the free stream.
To examine this question we introduce dimensionless variables:

I _ k(1f—w)

; the rule for assigning

KT 3

el P e Ve =l
Pt
We define m,=|_| n,
. Pt
ifw > 0,and m, = |- n*

if @ < 0; here n* means the complex conjugate of n. Then the secular equation becomes
(m)!—(m,)? [y-+i(B,—1)]+4, = 0. (4)
If boundary layer theory is to be applicable, all four of the boundary layer thicknesses

should be less than some small fraction { of the free-stream length scale L. We will suppose
that { < 0-2 suffices, although without a theory of the free stream it is impossible to be
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246 G. E. BACKUS
sure of this. The demand that all four boundary layers be thinner than {L can be restated
as follows: for either 7 = 41 or 7 = —1, all four of the roots m, of (4) must satisfy
|%m,| > u,
1|k
h RS ~
where u ) (5)

With { = 02, L = 600km, « = 2-5x10*cm?s, and 7" = 27/|w| we have u = 0-3T*
when 7' is measured in centuries. Routine but laborious algebra, given in appendix I,
shows that if < 0-3 then all roots of (4) have |#%m,| > u whenever both of the following

conditions are satisfied: o, < 0-45u°%, (6a)

16, = 4t (60)

In our problem, 100|w| < |f| except within 2° of the geographical equator. Outside
this narrow equatorial strip we commit an error smaller than 1 9%, by writing

With this approximation conditions (6) become
4] < 0-67] £} [0]}[£EL] em)s,
v < JI2C|f] ems.

Substituting L = 600 km, { = 0-2, « = 2:5x10* cm?/s and 27/|w| = T centuries, we

have |A| < 1-9T* |cos 0]* cms, (7a)

v < 5°2x10%cos | cm?fs. (7b)

Because u < 0-3, conditions (7) suffice to insure that all four boundary layers will be
thinner than {Z, i.e. 120 km. There remains the task of estimating » and 4 at the surface
of the core.

From Cain’s (1967) spherical harmonic amplitudes of the geomagnetic field up to
angular order [/ = 10, Booker (1968) finds that on the surface of the core fi. B nowhere
exceeds 5 G, so |4 < 0-45 cm/s. Thus if 7" < 1 century, (7a) is satisfied except within
3° of the geographic equator. The failure of (74) at the geographic equator lets one of the
magnetic boundary layers there become infinitely thick. This may invalidate the whole
boundary layer approximation, but we think that unlikely. In the mathematically
analogous problem of the steady flow of a viscous, conducting fluid through a cylindrical
insulating pipe in the presence of a constant transverse magnetic field, Roberts (1967)
has shown that the boundary layer is the usual Hartmann layer except at the singularities
where the Hartmann layer thickness becomes infinite. Near these singularities a boundary
layer of parabolic type is required, but it is still a boundary layer, and does not invalidate
the Hartmann-layer solution where the latter exists.

The kinematic viscosity of the core has been estimated by Jeffreys (1959) from the pas-
sage of seismic waves through the core without detectable damping. Gutenberg’s (Hide
1956) correction makes Jeffreys’s bound v < 109 cm?/s . Even with this very weak bound
on v, condition (75) is satisfied except within 11° of the equator.
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It seems possible that v in the core is very much less than Jeffreys’s bound. Nachtrieb &
Petit (1956) fit their data for liquid mercury below 10 kb and 400° Kelvin with an equation

of the form I (;V(_)) _ (3019) I:l*(p—;)%]Jr(E*;]gV*)_(E* ;&bﬂ) V*) ’ (8)

where R is the gas constant, g is Griineisen’s constant, £* is an activation energy of
4-21 X 10'0 ergs mole™! °K, V* is an activation volume of 0-885 cm?/mole (Nachtrieb
& Petit give V* = 0-587 cm?/mole, but they seem to have made an arithmetic error in
reducing their published data), and subscript zero denotes a reference state.

It appears that no measurements of the viscosity of iron even at kilobar pressures have
been made, so E* and V'* for iron are unknown. Suppose we assume, without experimental
or theoretical justification, that (8) holds for iron at 2 Mb and several thousand degrees
Kelvin, with roughly the E* and V* measured by Nachtrieb & Petit below 10 kb. For
iron, g = 1-6, while at the top of the core p = 9-7g/cm3 and p = 1-8 Mb (Bullen 1963).
If we take for the reference state p, = 1 bar, T, = 1700 °K, then v, for iron is about
1072 cm?/s and p, is 6-9 g/cm3. Equation (8) becomes

If 7" = 2000 °K, this naive estimate predicts v ~ 50 cm?/s at the top of the core. The esti-
mate of v is considerably more sensitive to V* than to the other parameters, and the dif-
ference between iron and mercury here could be very serious indeed. In addition, Cohen
& Turnbull (1959) give a qualitative argument that in (8) V* should increase at high
pressure. The evidence that v < 10° cm?/s in the core is at best suggestive, but what little
evidence there is points in this direction. Ifit is true, then (7) indicates that |f|>1 is a
very good approximation except in a thin strip at the geographic equator. In fact if
v = 10* cm?/s, for example, and if |a| < 1, then the Ekman layer thicknesses are of the
order of |2v/f|* while the magnetic boundary layer thicknesses are of the order of |2k/w|®.
The former is 120 |cos 6|~ metres, while the latter is 70 km.

The referee correctly points out that quite possibly the relevant viscosity in (75) is
an eddy viscosity. Attempts to estimate an eddy viscosity would constitute a separate
and, in my opinion, non-trivial investigation. The purpose of the discussion of molecular
viscosity given here is to show that the bounds on v are poorer than commonly believed,
but still good enough to justify boundary layer theory in the absence of an eddy viscosity
so large as to violate (7b). An eddy viscosity of 108 cm?/s with velocities less than 0-5 cm/s
requires eddies 4000 km across. This seems unlikely in a boundary layer, but the problem
of turbulence in the core is a very difficult one.

In the remainder of this paper we will treat the core, V, as ifit were a perfect conductor.
The ‘surface’ of the core, JV, will refer to the top of the free stream, just below the Ekman
and magnetic boundary layers.

4. FORMULATION OF THE PROBLEM FOR A PERFECTLY CONDUCTING CORE

We assume that we have a simply connected volume V of perfectly conducting fluid
in vacuum. Frozen into the fluid is an internal magnetic field, and magnetic flux pene-
trates the surface to produce an external magnetic field, The fluid moves with a velocity v

31 Vor. 263. A.
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248 G. E. BACKUS

so slow that the displacement current outside V is negligible. We assume that we can
measure B just outside the boundary dV of V, but that we have no other information
about v. We denote by fi the unit outward normal on JV. What can we learn about v?

At the outset it is clear that the external B is completely determined by the motion
of the surface fluid dV, and does not directly reflect the motion inside V' (Bondi & Gold
1950). Different internal motions which produce the same surface motion produce the
same external B. Therefore at best we can hope to determine v on JV. Because we are
interested primarily in the earth’s core, we assume that fi.v = 0 on JV.

The equation governing the magnetic field in a perfect conductor moving with velocity
vis 4B = Vx (vxB). (9)
We observe B just outside V. Since fi. B must be continuous across 2V, we know n. B
in the fluid just inside 2V, where (9) applies. If fi x B is also continuous across ¢V then we
know 11 x B just inside the fluid. We examine both cases, where we know only fi. B and
where we also know i x B in the fluid just inside ¢V. What can we learn from equation
(9) about v on dV'?

5. CALCULATIONS IN CURVILINEAR COORDINATES

Even if dV is a sphere, it will be necessary to discuss (9) in curvilinear coordinate sys-
tems more general than ordinary spherical polar coordinates. The coordinate systems
we are about to discuss have been treated at some length by Backus (1967) when 9V is a
sphere.

Let x! and &2 be curvilinear coordinates on a patch (a relatively open subset) of dV.
Let r(x!, x2) be the position vector of the point on JV whose coordinates are x1, x%. Let J, de-
note the partial derivative with respect to x’. We assume d,r x d,r = 0. Let fi(x}, x2) be the
unit outward normal to dV at r(x!, 2). Let V¢ denote the surface gradient operator on ¥

Vg = V—n(i.v). (10)
Let g;; and g¥ be the covariant and contravariant components of the metric tensor on dV:
& = o,r.gr,
g7 = Vxt . Vxi,
Let f;; be the covariant components of the second fundamental form on JV
S = n.9,0;r.
Let f/ = f,,¢%. Let D, denote covariant differentiation with respect to x on V.
We incorporate x! and 2 as two of the coordinates in a three-dimensional system of cur-

vilinear coordinates x!, 2, x3 defined near dV. The coordinates x!, 2, x4 are assigned to the
point whose position vector is

R(x1, x% #3) = r(x!, x2) 230 (x, £2). (11)
The equation of dV is x3 = 0. We use the Einstein index conventions with greck indices

taking the values, 1, 2, 3 while italic indices are 1, or 2. The covariant and contravariant
components of the metric tensor in the coordinate system x!, x2, x3 are

Gaﬁ - auR-aﬂR’
G = Vx* . Vxb,
50 Gy = gy Gy; = 0, Gy = 1, GV = g, G% = 0 and G = 1.
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Any vector field Q defined in 3-space can be written in terms of its covariant com-
ponents @, as Q = Q V=

and in terms of its contravariant components @* as
Q = @+, R.
On JV, @ and @, are the contravariant and covariant components of the tangent-vector

field Q—n(fi.Q), while Q3 = @, = n.Q. Under a change of the coordinates x! and 2
on dV, the component 3 does not change; its scalar behaviour prompts the definition
Dz'Q3 = 91-Q3.

Using the relations between G, ; and g,, we can deduce the relations between the three-
dimensional covariant derivatives 2, and the surface covariant derivatives D,. They are

2,Q7 = D;Q)—f/ Q%
giQs = DzQ3+fzj Q’,

. o (12)
R ey
2,Q° — 3"
Since V.B = 0, the contravariant components of equation (9) are
If we assume v® = 0 and appeal to (12), equations (13) become
0,B34D,(B%") = 0, (14)
0,B: = B Div'—vl D, B'+ B3 J3v'— (V. V) B (15)

Alternatively, these equations can be obtained simply by observing that from the sym-
metry of the Christoffel symbols

BF D gv*—vF Dy B* = BF dgv*— v 9, B,
Bi Dv'—vi D, B! = BJ d;v'—vI J; B'.
Roberts & Scott (1965) have already obtained what amounts to (14) when JV is a sphere
and x! and x? are colatitude and longitude. Equation (14) is exactly the equation for the
conservation of flux per unit area (B%) in a two-dimensional fluid moving with tangential
velocity v on dV.
We note in passing that if dV is a sphere the generalization of (14) to the case of x 4 0

can be obtained immediately from equation (62a) of Backus (1958) by observing that on
aV we have v, = 0 and J,v,+ D.v' = 0. That generalization is

6,85+ D(B) = V2 (rB?)
where 7 is radial distance from the centre of the sphere.

A
6. VELOCITY INFORMATION FROM n.B

In this section we learn what we can about v from (14) when B3 and d,B° are known on

9V but B! and B? just inside the fluid are not known, so that (15) is of no use.

31-2
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In Gibbs’s dyadic notation (14) can be given the suggestive form
0,B>+Vs.(B) = 0 (16)

where the surface divergence Vg.q is defined as D,¢'. Kahle ¢t al. (1967) try to find v
uniquely by truncating its expansion in surface vector spherical harmonics and choosing
the expansion coeflicients to minimize the surface integral of the square of the left-hand
side of (16) when the observations for B3 and ¢,B° are inserted there. We will see that if
there is even one v which satisfies (16) there are infinitely many, and we will explicitly list
them all.

By hypothesis dVis simply connected. Then if q is any vector field defined on and tan-
gent to dV there are two uniquely determined scalars ¢ and ¢ on JV such that

fa ¢dA:f Jdd — 0 (17)
and q = Vep-nx V. (18)

For references and a discussion of this theorem see, for example, Backus (1966). It is easy
to calculate that for any ¢ and ¢ V. (X V) = 0 (19)
and n.[Vyx (Vgd)] = 0;

therefore Vy¢ in (18) is called the irrotational part of q while —fx Vgy is called the
solenoidal part. The theorem just quoted can be rephrased thus: on any smooth surface

topologically a sphere, any tangent vector field has a unique resolution into an irrota-
tional and a solenoidal part.

We apply this theorem to B3v. We let ¢ and ¢ be the scalars satisfying (17) and

B3v = Vyg—nx V. (20)
Then, from (19), we see that (16) is simply
9,B3 V2 = 0, (21)

where Vi means V. Vg or giD.D,. If oV is a sphere of radius R, V% is the angular part

of the Laplacian:

R?VZ% = -1—0 ,sin 00, Tn7d

0 and A being any system of co-latitude and longitude.

Given ¢,B3 it is well known (see, for example, Backus 1966) that (21) has exactly one
solution ¢ satisfying (17). When JV is a sphere, simple techniques for solving (21) are
reviewed at length by Backus (1958). If ¢,B% is known, the irrotational part of B3v is
completely determined by (16).

We should note that if flux diffusion is negligible over the surface of the core except in
a few small patches, then (21) will apply except in those patches. But then ¢ is no longer
uniquely determined unless its boundary values at the edges of the patches are known. In
the rest of the present paper we assume that (20) holds over all of dV.

No matter how ¢ in (20) is chosen, the resulting v will satisfy (16), so (16) contains no
information about the solenoidal part of B3v. However, we do get some further information
about v and some information about ¥ by demanding that v be continuous and examin-
ing the points where B3 = 0.

2
a5,

0
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A point on JV where B3 = 0 will be called a null-flux point. We consider only the simp-
lest case. We assume that the set of all null-flux points consists of a finite number of con-
tinuously differentiable, non-self-intersecting closed curves, to be called null-flux curves.
We assume that no null-flux point lies on more than two null-flux curves, and we call
a null-flux point ordinary or double according as it lies on one or two null-flux curves.
To each point on a null-flux curve C we assign a unit vector v orthogonal to C and fi
at that point and so as to be continuous on C. Then 9 is tangent to JV everywhere on C.
We assume that at a double null-flux point the two null-flux curves C; and C, meet at a
non-zero angle, so that their normals 9, and 9, are linearly independent at the point of
intersection. We assume that B® vanishes only to first order at ordinary null-flux points
and only to second order at double null-flux points. That is, at every ordinary null-flux
point ¥.V B3 =+ 0, and at a double null-flux point 9,.VVB3.9, & 0. We assume B3
twice continuously differentiable on dV, so that VB3 = 0 at a double null-flux point.

We call any maximal connected set of null-flux points a null-flux web.

At a null-flux point, (16) takes the form

0,B*+v.V¢B3 = 0. (22)
At an ordinary null-flux point, V.V B3 = (3.VB?) ($.v) so we can write (22) as
$.v =—0,B3(3.VyB3). (23)
At a double null-flux point we must have

0,B% = 0 (24)
if v is bounded.

From (20), at every null-flux point we must have

if v is bounded. Since ¢ is determined from J,B% by (21), it follows that ¢ is determined to
within an additive constant on every null flux web. But will we really be able to solve (25)
for a single valued ¥ on each null-flux web? On dV let 4 be a patch whose boundary 94
is a null-flux curve. If ¢ is single-valued on d4 we must have

§ Ve S h) dl — o,
24

where / is arc length along d4. But from (25) this means
9§ Veg.0dl — 0,
24
whence Gauss’s theorem implies f VigdAa = o.
4

Then it follows from (21) that f 9,B%dA — o. (26)
A

Now we have two conditions which d, B® must satisfy if it is to be produced by advection
of B*in a continuous velocity field v on dV. At any double null-flux point we must have (24).
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And if 4 is any patch on JV whose boundary d4 is a null-flux curve we must have (26).
If either of these conditions fails, no continuous v will produce ¢,B% from B3 by advection,
and we must invoke flux diffusion.

We have shown that (24) and (26) are necessary conditions for the existence of a con-
tinuous v which satisfies (16). Now we show that those conditions are also sufficient.
First we solve (21) for ¢. If (26) holds then it will be possible to solve (25) for ¢ on each
null-flux web, to within an additive constant which we choose arbitrarily. On the part of
dV where B3 =+ 0, we choose ¢ arbitrarily, making sure that it is twice continuously
differentiable on all of 9V and that 9.V = — (¥ x11).V4¢ on each null-flux curve. In
this fashion we construct a 3 which we will call ¢,. Substituted in equation (20), it gives
a continuous v, which satisfies (16).

It remains to find all other ‘eligible’ velocity fields, that is, all other tangent velocity
fields v on JV which satisty (16) for the given functions J,B° and B3. Because (21) deter-
mines ¢ in (20), any eligible v must be such that B3v and B3v, have the same irrotational
part. Hence for any eligible v there is a scalar ¢, such that

B3V — B3v,—fix Vi, (27)

From (25), Vi, = 0 at every null-flux point, so ¥, is constant on every null-flux web.
Conversely, if ¢, is any twice continuously differentiable function on ¢V which is constant
on every null-flux web and has 9.V, = 0 on every null-flux curve, then (27) gives an
eligible v, a continuous v which satisfies (16).

The physical meaning of the conditions on ¢,B% and v at null-flux curves is simple.
We can ‘see’ B3 and J,B° but not v. A null-flux curve always consists of the same fluid
particles (other level lines of B3 do not), so we can follow the motion of such a curve of
particles, but we cannot see how the individual particles slip along the curve. On any
null-flux curve we can see how fast the fluid moves normal to the curve, whence (23).
At a double null-flux point we have the components of v in two different directions, the
normals to the two moving null-flux curves, so we know v unambiguously at every double
null-flux point.

The physical meaning of (26) is equally simple. If the patch 4 is bounded by a null-flux
curve, it always consists of the same fluid particles, so the magnetic flux through it is
constant. But if ¥ points out of 4 then

,ﬂstdA:J E}tB?’dAJrf B3%.vdl.
dt¢ J 4 4 04

The vanishing of the left-hand side and of B3 on d4 gives (26).

Using Cain’s (1967) harmonic amplitudes Booker (1968) has looked at B® and ¢,B° in
on the core/mantle boundary. Within the limits of resolution permitted by the absence of
spherical harmonics above angular order / = 10, Booker finds three null-flux curves and
no double null-flux points. He finds that (26) is not satisfied unless one excludes the dipole
from J,B®% or admits in J,B% spherical harmonics whose amplitude is uncertain by 100 per
cent. It will be interesting to see whether this situation persists as the harmonic amplitudes
are improved. ‘
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7. VELOCITY INFORMATION FROM fi. B AND 1 X B

For completeness we consider the possibility that B in (15) are known just inside JV.
We assume that we have already extracted from (14) all its information about v, so that
¢ is known on JV and 9.V is known on every null-flux curve. In the Earth’s core we can
assume V.v = 0, but for completeness we also consider the possibility that V.v is
unknown.

No matter how we choose v to satisfy (14) and no matter what we assume about V.v,
we can always solve (15) for d;¢* at any point on JdV where B3 =+ 0. Therefore (15) gives
information about v on dV only at points where B3 = 0, that is, on null-flux curves. To
examine a particular null-flux curve C, we introduce orthogonal coordinates x!, 2 on JV
such that the equation of C'is 2 = 0. We define

g = (gng)h
7 = (gn/gx)",
so that (20) can be written gB3v! = y719, 9+ 0,9,
gB* v = ydyp— 0y
Then gB3d,v' +vid,(gB3) = wi, where
w! = do(y~1 01§+ 0y ),

. w? = 0y(y Oy — 1 ¥).
From these definitions

Oyl dyw? = o[ 0, (y71 01 8) + 05(y 9, 8)] = 95[gV54],

so from (21) Oy -+ dyw? 4+ 0, 05(gB3) = 0. (28)
Moreover (gB®) d3vi4-20,(gB®) d,v' +1i 03(gB®) = dyut,
so on the null-flux curve 2 = 0 we have
, w
Vb= T B s
d,(gB%)

(29)
0y — 32, [9—2(—’;’?3-)] .

If we multiply the second of equations (15) by 2B2%d,(¢B%) and make use of (28) and (29)
we obtain the following equation, valid on the null-flux curve x? =

h[w!(B?)?] = 2B1B%(9,0%) 95(gB%) — (9,402 9,)[(B?)? 6,(¢B*) ] —2(B?)? (V. V) 6,(¢B%). (30)
The first of equations (15) is
B?9,0! = (V.v) B'+4¢,B'+v'd, B +v% 3, B' — Bl 9, vl. (31)

From (30) and (31) it is clear that the points on the null-flux curve C where B? = 0
will play an important role. We call such points ‘touch points’ because they are points of
tangency of B and C. We must consider two cases:

Case 1. V.v unknown. Then we can always choose V.v on C (the null-flux curve
x? = 0) so that (30) can be integrated around C to give a single-valued, continuous v!
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while (31) can be solved for a continuous d,v'. Therefore equations (15) give no new in-
formation about v on dV, and no new conditions on B and 4,B.

Case 2A4.V.v = 0 and C has no touch points. Then if w! is to be single-valued on the closed
curve ' we must have
3§0de1 ~ 0 (32)
where H is the right-hand side of (30). If this necessary condition is satisfied, we can solve
(30) for w!(B%)? to within an arbitrary additive constant. Having chosen this constant we
have »! on C. Then we can solve (31) for dyv! on C. From the definitions of w' it follows
that now on C we know ¢, d,%, 93y and d3¢. We can choose ¢ arbitrarily where B3 = 0, as
long as we fit it with three continuous derivatives onto the null-flux curve.

Case 2B. V.v = 0 and C has at least one touch point. Then if x! and x} are the x! coordi-
nates of any two touch points on C, or the coordinates of a single touch point before and
after one traversal of C, we must have

ﬁbdel —0 (33)

where H is again the right-hand side of (30). If (33) is satisfied for all touch points on
C then we can integrate (30) for w!(B?)? and now w!(B?)? is uniquely determined on C;
only one choice of the additive constant of integration makes w! continuous at the
touch points. The value for d,»! obtained from (31) will be continuous at the touch points
if and only if at every touch point we have

0, B! +v' 0, B! 029, B — B 9, 0! = 0. _ (34)
Since »! as well as 2 has been determined on C by this stage of the discussion, (34) is
another condition on ¢,B and B, failure of which means that no v continuous on JV
can satisfy (16).

We can summarize the results of case 2, the case of interest for the Earth’s core: if
i X B is observable just below ¥, we have further conditions on B and 4, B on null-flux
curves, necessary for (9) to have any continuous solution v on V. If these conditions ((32)
on null-flux curves without touch points and (33) and (34) on null-flux curves with touch
points) are satisfied, then we have information about &y and 43¢ on null-flux curves,
but ¢ in (20) can be chosen arbitrarily where B® = 0 as long as ¢ and its derivatives
of orders one, two and three fit continuously into the values determined on the null-
flux curves.

The physical significance of the conditions on v, J,B and B obtained from (15) is less
clear than for (14). If a fluid particle is a touch point at one instant, it is always so, and
its motion can be followed because the touch point is always identifiable. The velocity of
a touch point is obtainable from B and J,B whether V.v vanishes or not. The integral
conditions (32) and (33) are perhaps a description of flux constancy through a fluid
ribbon one of whose edges is C, but I have not succeeded in demonstrating this conjecture.

A A
8. VELOCITY INFORMATION OBTAINABLE FROM N X E AND n. B

Let E denote the electric field vector. If we know fi X E and fi. B just outside the core,
we can find v at the top of the free stream very easily. In a perfect conductor we have

E =—vxB.
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On the boundary 4V, if we take the cross product of fi with the foregoing equation we
obtain AxE = (i.v) B—(i.B) v.
Since n.v = 0, we have immediately
nxE =—(n.B)v.

Maxwell’s equations imply that at the boundary dV of a perfect conductor both fi x E
and n.B are continuous. Therefore if we can measure these quantities just outside 9V
we can determine v uniquely everywhere on dV. The resulting v will be continuous if and
only if fi X E vanishes at least linearly on the null-flux curves.

Unfortunately there are serious obstacles to measuring E at the core-mantle boundary.
Let A be a magnetic vector potential outside the core, so that B = Vx A, V.A = 0,
and E = - A—VW. Ohm’s law in the mantle is VX B = g, 0E if we neglect dis-
placement currents. Therefore the equation governing the potential W is

VW +VW.VIn ¢ =—3,A.Vino.

The effect of a non-vanishing ¢ in the mantle does not disappear at low frequencies for
the electric field as it does for the magnetic field. Therefore the large uncertainty in ¢ in
the mantle probably makes it premature to attempt to extrapolate to the core an E
observed at the top of the mantle. This is true even if E is measured on the ocean bottoms
to eliminate the very large effect of the conductivity of sea water.

9. WESTWARD DRIFT

From what has been said above, it is clear that there is no unique solution to the
problem which Kahle et al. (1967) have set themselves, to find from ¢,B and B on JV
that v on JV which best satisfies (16) in the least-squares sense. They find a unique solu-
tion only because they have truncated the vector spherical harmonic expansion of v.
But as we saw in §6, without that truncation the non-uniqueness of v is not simply a
question of lack of small-scale resolution. Two different v’s can satisfy (16) and yet differ
by an amount comparable to their own amplitudes on a length scale equal to the circum-
ference of the core.

Despite this indeterminancy, B and ¢,B can be used to answer questions about v if
those questions are posed in a way which explicitly recognizes the non-uniqueness of v.
As an example we discuss the question of westward drift at the top of the free stream in the
core. We ignore (15) because even if fi X B is known just below ¢V the information which
(15) gives about v is confined to a few points and curves. With the limited spatial resolution
now available in J,B at the core, such information is much less reliable than areawide
information of the sort conveyed by (14).

We let ¢,B3 and B3 denote the values observed just above dV. We call a continuous
velocity field on JV which is tangent to ¢V and with B3 and J,B? satisfies (16) (or equiva-
lently (14)) an eligible velocity field. We suppose that (24) is satisfied at every double null-
flux point and (26) is satisfied for every patch 4 bounded by a null-flux curve, so that B?
and ¢, B3 admit at least one eligible velocity field v,. Then the other eligible v are precisely

those of the form v = vo— (B%)-1AxVyy, (35)

32 VoL 263 A.
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where ¥ is in &, the class of all functions which are constant on each null flux web and
have 9. V4 = 0 on each null-flux curve.

Given the observed ¢,B% and B? any of the velocity fields (35) is eligible, so we cannot
ask whether there is westward drift of core fluid, or latitude dependence of the westward
drift of the core fluid, at the top of the free stream, unless we have other data or other
conditions on v which are not now available. (That the magnetic field itself shows a west-
ward drift was, of course, clearly established by Bullard, Freedman, Gellman & Nixon
1950.) We can ask, however, what is the eligible velocity field which in the least-squares
sense is most nearly a uniform rigid rotation about the geographic polar axis of the Earth.
This velocity field has no particular claim to reality, but if its r.m.s. deviation from pure
rigid rotation is much less than its r.m.s. value we may be impelled to examine core
mechanisms capable of producing such a result.

To find the velocity field in question, we seek ¥ in & and that constant 2 which mini-
mize the integral

20 — f [Vo— (B x Vi) /B —AQR sin 012 d4,
oV

where A is the unit vector in the direction of increasing geographic longitude A, # is geo-
graphic colatitude, and R is the radius of the spherical core. A positive () is an eastward
drift of the core relative to the mantle.

The integral can be written

2Q — f [V B3+ X vy-+0QR sin 0]? dA. (36)
oV

For given ¢ and Q, small variations ) and §C2 change @ by an amount 0 which, after
an integration by parts and a use of 0)’s membership in &, can be written

0Q = RQ LVsin 00,9/ (RB3) —X.v,+QRsin ] d4
—faV&ﬁVS. [(B)=2Vy+(B¥) ! (A x vy+0QRsin 0)] d4. (37)
If ¥ and Q in fact minimize (36) then §Q = 0 for any 0Q and any 0y in &. Hence the
minimizing Q and y satisfy
Q=gn [ sindh.vo—d,y/(RBY)] d4, (38)

V2y—2(B3)~! VB3 Ve = B [Vg. A X Vy+2QR cos 0]
—VB3.[fix v, +8QRsin 0]. (39)

The singularity of the elliptic equation (39) for ¥ on the null-flux curves makes solu-
tion of that equation more than a routine question. For the corresponding plane problem
when there is only a single, straight null-flux line Schechter (1960) has proved existence
and uniqueness for the Dirichlet problem. We will assume that Schechter’s result general-
izes to the present case, but we must emphasize that we have not proved this assumption.
We assume that if W, ..., W, are the null-flux webs on dV and f is any suitably smooth

function on JdV then Viy—2(BY-\ VBS. Ve — f (40)
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has exactly one solution ¢ in & which takes any specified values K, ..., K, on the webs
Wi, ..., W,. (Schechter’s result would permit K, to be a function of position on W;
we need only the case where K; is constant.) The solution which is 1 on W, and zero on the

other webs when in (40) f= BV AXV,—V B v,

we denote by ;. The solution which vanishes on all the webs when
Jf = R(2 cos §—sin 0 d,) B®
we call ;. Then the solution of (39) which takes the value K, on W, is

¢ = QJo“l‘él Ki’/7i-

To simplify the notation we relabel 2 above and in (36) and (39) as K. Then

lﬁ = éo Kz' lii- | (41>

Now g, ¥4, ..., ¥, can all be calculated from 9,83, B3, and v, if as we assume, Schechter’s
theorem generalizes to the present geometry. We don’t yet know the constants K, ..., K, ;
they must be chosen to minimize @ when (41) is substituted in (36). This substitution
gives ( as an inhomogeneous polynomial of second degree in K, ..., K, whose homo-

geneous quadratic part is positive definite. Thus there is a unique choice of Ky, K, ..., K,
which minimizes Q when ¥ is given by (41). The minimizing K’s are found as the solution
of n+41 linear inhomogeneous equations, one of which is (38). The system is non-singular
because the matrix of the homogeneous part is symmetric and positive definite.
Essentially the same technique can be used to investigate latitude-dependent west-
ward drift if we are willing to consider latitude dependent €2(f) with only finitely many

degrees of freedom, such as

Q) = 5 QP (cos0), (42)

where Qg, Q, ..., Q, are constants and P;(x) is the jth Legendre polynomial. We seek that
eligible velocity v which in the least squares sense is most nearly of the form ARQ(0) for
some choice of €, ..., Q  in (42). That is, we seek the ¢ in & and the constants €},
Q,, ..., Q,, which minimize (36) when in (36) Q has the form (42). The discussion pro-
ceeds exactly as before. The minimizing ¢ has the form

m+n+1

v="3 K, (43)

where the ¥, are obtained from 9,83, B3 and v? and the constants K; are then determined
by substituting (43) in (36) and minimizing @ as a function of Ky, K, ..., K, ;- The
constants K,,,, ..., K,,,,., are the values of ¢ on the null-flux webs W, ..., W,, while
Ky, Ky, ..., K,, are the Q,, Q,, ..., Q_in (43). The K, emerge as the solutions of m-+n-1
linear inhomogeneous equations, the matrix of whose homogeneous part is symmetric and
positive-definite and hence nonsingular.

If we try to generalize the foregoing procedure to the case that €(f) is an arbitrary
function of ¢ we encounter serious complications. We must find the Green function for

32-2
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(40) with ¥ = 0 on the null-flux webs. Then from (39) and this Green function we must
express ¢ as a function of (). We must substitute the result in (36) and minimize @ as
a functional of Q. The result is a singular Fredholm equation of the first kind for €(f).
Alternatively, we can use (39) and the analogue of (38) obtained from (37) when €2 and
Q) are functions of §, namely

Q) = 5 o f Z [&.vo— 8,9/ (RB%)] d. (44)

Inserting (44) in (39) gives an integro-differential equation for y. Neither this nor the
Green’s function approach makes it clear whether the mathematical problem is well posed
when € is an arbitrary function of f. It would appear, however, that representations in
the form (41) should suffice for all practical purposes.

If y is given, whether it minimizes (36) or not, the () of (38) describes the rigid rota-
tion which best fits the velocity (35) in the least-squares sense. A. Toomre (1960, private
communication), Hide (1966) and Malkus (1967) have suggested that perhaps € is zero
and the westward drift of the magnetic anomalies is the surface manifestation of a tendency
for Alfvén-inertial waves in the core to have predominantly westward phase-velocities.
From (38) it is clear that we cannot decide between this wave hypothesis and the suggestion
of Bullard et al. (1950) that there is a net westward drift of fluid in the upper core. We can
always find a ¢ in ¢ which gives Q in (38) any value whatever.

Although we cannot decide between the two hypotheses by examining only the secular
variation, we can at any rate sharpen an observation recently made by Stewartson (1967,
p. 183) who says of westbound hydromagnetic waves in the core as a cause of the west-
ward drift in the secular variation, °...the oscillations cannot be observed directly outside
the shell under the assumed conditions and can only be manifested indirectly’. The test
of whether a scalar field f(0, A, ¢) on dV tends to drift westward is a comparison of d, f
with d, f. In the simplest case, J, f/J, fis constant. A more sophisticated test for the presence
of appreciable westward drift in f'is the demand that there exists a constant ) or a function

Q(0) such that the ratio
[ Jos—a,rraaf{ o fpas
v oV

is considerably less than 1. A still more sophisticated test is to examine the Fourier com-
ponents of f (Hide 1966). The test for whether a tangent vector field v (0, A, ¢) drifts west
on ¥ is to test the two fields 8. v(6, 1 £) and X. v(0, A, ¢) as if they were scalars, and to require
that their westward drifts, if present, be the same. In any case, the test for westward drift
involves a comparison of time derivatives with derivatives in longitude.

Now we assume, with the proponents of the wave theory of the westward drift, that in
discussing the secular variation we can treat the free stream in the core as if it were a perfect
conductor. Then Alfvén-inertial waves can certainly exist in the core, but the magnetic
field which supports them is the toroidal field. The poloidal field B® at the surface of the
core is relatively much smaller and almost without dynamical effect. It acts only as a tracer
of the fluid motion in that it is governed by (16). But in (16) J,v does not appear. In other
words, the behaviour of v with time and the question of whether the pattern of v shows a
westward drift are completely irrelevant to the equation by which the free-stream motion
determines the secular variation. In so far as v governs J,B% as if the free stream were a
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perfect conductor, any westward drift in the pattern of v is irrelevant to the observed
westward drift in the pattern of B3.

An analogy may clarify the situation. Consider an observer in a windowless, 24 h
Earth satellite at the longitude of the Rocky Mountains. Suppose advanced electronic
surveying techniques enable him to see on a television screen an instantaneous topographic
map of the western United States. A Love wave travelling from east to west across the
Rockies will not produce westbound waves on the map. It will produce heterodyning
between the Love wave-numbers and the wave-numbers in the topography.

APPENDIX I. SOLVING THE SECULAR EQUATION
We want to learn for which values of « and f§ or y and £ all the roots of (4) have

|Zm,| > u.

From (5) we infer that to deal with periods in the Earth’s core shorter than a century it
probably suffices to consider 4 < 0-3 unless the electrical conductivity of the core is as
low as 10° mho/m, in which case we should consider u < 0-5.
It will be useful to note the solution of (4) in two special cases. First, when |§,|< 1
and o, is finite, Mep = 47+ 0|4, a2+ D)),
m,, = |8, etiment 4 O (8, ! (a2+1)}).

Thus for any positive u, the axis f, = 0 lies outside the region where all roots of (4)
satisfy |%m,| > u. Secondly, when |f,| > 1 and 7y is finite, so «, < 1, then

M = e O(|f,|7! (y2+ 1)), }

myy = | fFetirsens 4 O(16, ¥ (2 1)),
Therefore if u?> < % both ends of the axis « = 0, that is £, > 1 and f, < —1, lie inside

the region where all roots of (4) satisfy |%2m,| > u.
It remains to find the dividing line between the two regions, i.e. the level curve

Am, (o, f,) = u.

For a given value of u, we seek the real ¢, and §, or £, and y which produce roots of (4)
in the form

(45)

m, = u(l+1ix), (46)
where x is real. To find these values of a,, £, and y we substitute (45) in (4), equate real

and imaginary parts to zero, and solve the resulting pair of simultaneous equations for «
and f. The result can be written

o, = |a|fu?,
/))T = 2u2ba
o 1=a? T4 x4ut (14-42)2
where a= (11 42)2 [ 14262 % ], (47)
(1 4x%)2 (1 + 2u%x)
b= 2[2x +u? (1+42)2]" (48)
—x2 2 4 2\2
In addition y = (=) [k 4l put (1442%)7]) (19)

2x+u? (1-+x%)2
32-3


http://rsta.royalsocietypublishing.org/

/|
e A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

JA \
,’,/ A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

260 G. E. BACKUS

To study these expressions we use the following fact: if P(u, ) is a real polynomial in x
depending on a real parameter u, and if J, P is continuous, then as u varies the number of
roots x of P(u, x) = 0 can change only at values of u and x which satisfy not only P (u, x) =0
but also J, P (u, x) = 0.

From this principle (or by direct calculation) it follows that in (49) the polynomial
1+4u?x+u* (14-x2)2% is positive for all real 4 and x except u? = %, x = —1. It also follows
that the denominator in (49) is positive for all real x if #* > 2% while if u* = 2% there is a
double zero at x = —3~%, and if 0 < u* < 2% there are two real zeros, x,(u) < —3~* and
x,(u) >—37% In fact if 0 < u* < 2% we have

—1/2u? < x(u) < —37F < x,(u) <0

except that when #? — § then — (2u42)~! = x,(«) = —1. If u is very much less than 1,
x () = —(2/u)*+ 0 (ub), (50)
Xy(u) = —5u*+0(uf). (51)

From its definition y must be positive. Therefore when 0 < u? < 1 it is clear from (49)
that the only possible values of x are in the intervals.

x(u) <x < —1 (52)
and xo(u) < x < 1. (53)

Therefore the level line #Zm_(«,, f,) = u has two branches. On the first branch we have
(52), b(x) < 0, and b(—1) = —1, while b(x) - —c0 as x — x,(u). Moreover, a(x) < 0,
a(—1) = 0, and

o) = e = 5 [y =2 | o

On the second branch we have (53), &6(x) > 0, and (1) = 1, while b(x) - + 00 as
x — x,(u) from above. Moreover, a(x) > 0 and a(1) = 0 while

1 —xy(u)? wlr 1

a(%y(u)) = 0Frn@P - 2 m“xz(“)]- (55)

Since a = |a|/u?, we are only concerned with |a|, not the sign of a. Level curves of
%Am, = u are given in the b, |a| plane for two values of  in figure 2. The first branch is
on the left, the second branch on the right. The region where |%Zm,| > u is the region
below the level curves and above the b axis.

We recall now that f, = «(7f— w)/vw so that, for the solutions of (2) whose time
dependence is periodic with period 27/|w|, § can have either sign. Therefore we have two
sets of level curves in the b, |a| plane, one obtained from the other by reflexion in the |q|
axis. In order to have |#Zm,| > u for all roots of (4) with both choices of 7 and both signs
of » we must choose the point (4, |a|) to lie below the lower of the two level curves.

When u* < 2% the lower curve is always the first branch, so we ignore the second branch
in the rest of this appendix. In figure 3 we show the first branch for various values of .
Here the horizontal axis is |b|~! so that the whole curve can be shown on one figure.,
The region where |Zm,| > u for all four roots of (4) with both choices of 7 and both
signs of w is the bounded region in figure 3 enclosed by the axes of ||~! and |a| and
the level curve labelled .
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Ficure 2. Level lines of #m, (a,, #,) = u in equation (4) for u = 0-3 and u < 1. The vertical axis
is |a|, the horizontal axis is b, and a = |a|u~?, f = 2u?. Note the different scales for |a| when
b is positive or negative.

0-141
u=0
0-10
0-12 0-20
025
0:30
010} 035
- 040
0-08F 0-50
—a
0-06~
0:04}
002
| | | | | | | ] |
0 02 04 06 08 10

— b1

Ficure 3. The most restrictive level line of #m, (a,, #,) = u (that with B, < 0) plotted for various
values of u less than 0-5. The vertical axis is |a|, the horizontal axis is [6|~!, and « = |a|u?,
B = 2. If (||, |a|) lies below the curve labelled u then all roots of equation (4) satisfy
|#m,| > u for both signs of 7 and w. Note the local minimum of || in the interval 0 < |b|-! < 0-1,
which appears at u = 0-2369 and disappears at u = 0-3142.
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As u increases from zero, the level curves in figure 3 develop a local minimum

near |b|~! = 0-1. This minimum first appears at u = 0-2369, and it disappears at
u = 0-3142. The level line for a given u intersects the |a| axis at |a| = |a(x,(u))|. Figure 4

gives a graph of gw) = (2/u®)? |a(xy(w))]

as a function of « in the interval 0 < u < 0-5. The small spur projecting down from this
graph in the interval 0-2369 < u < 0-30 is a graph of

) — (2/u)t min Ja(z, )],

where min |a(x, «)| is the local minimum shown in figure 3 near |b|~! = 0-1.
X

10

0-8

04~

g(u) and k(u)

02

! L ! l J
0 0-2 04
u

Ficure 4. Graphs of g(u) and A(u). The continuous curve running from u = 0 to u = 0-5 is g(u)
and the small down-projecting spur between u = 0-2369 and « = 0-30 is A(u).

If0 < u < 0-3, it is clear from figures 3 and 4 that |%m,| > u if both
la| < h(0-3) (u?)* (56a)
and |6]71 < 0-50. (560)

These two conditions are much too stringent to be necessary, but they are sufficient to
assure that |#m,| > u for both signs of 7 and  and all roots of (4). Conditions (56) arc
precisely conditions (6).

If ¢ is as small as 105 mho/m, then « can be 7-5x 10* cm?/s, and we must consider
0 < u < 0-5. In this case we need more stringent conditions on |a| and [b|~! to assure
|%m,| > u. Examination of figure 3 shows that one sufficient condition is

N
() (k) 065 =

or a-t B (*‘—'72 . (57)
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If we write |7f— w| = | f] then (57) becomes
A2 2(¢L)H ol b < 0-63g()| o] (LK),

The most stringent limit is at the least value of w, 27/|w| = 1 century. If we take this
value for |w|, and take L = 600 km, { = 0-2, k = 7-5x 10* cm?/s we have

v

A2+m§ < 5'2[COS 01 (58)

as a sufficient condition that all the boundary layers be thinner than {L when
0 <u<05.

In (58), the radial Alfvén velocity 4 is in centimetres per second and the kinematic vis-
cosity v is in centimetres squared per second.

AprrENDIX II. THE EFFECT OF THE BOUNDARY LAYER ON THE MAGNETIC FIELD

In this appendix we examine the argument of Roberts and Scott that B must be
constant throughout the boundary layers, and that in §3 we should take b(0) = 0.

We use the notation of §3 and discuss only the case |f| > 1, this being the case con-
sidered by Roberts & Scott, and probably a correct description of the upper core unless
there are unforeseen large pressure effects on the kinematic viscosity of iron. Throughout
this appendix if z is a complex number, z* is the square root with positive real part.
If we write § = 7’|f| then the solutions of (4) which have positive real part are

= QU [1 =500 |, (59)

e = (=100} 14 g 008 |, (60

where « and f are «, and f,, and {, = a_+1i7". Then the Ekman layers are thinner than
the thinnest magnetic boundary layer by a factor of |f|~* < 1. The thicker magnetic
boundary layer is the thickest of all four layers. Its thickness is

(n)~1 = P (@2 1)t [(a2 1)l (61)

computed by neglecting all but the leading term in (60). We have

me, =7l

(62)
. m2, = |.]C.)
to lowest order in | f]~1.
If we write the solutions of (2) in the form
12, 0) = Ve -

b.(z,t) = B,em=mia, |
then we have, without approximation,

(5)%{3;, _ym,  mi—if
v) V. omidr o omoyt

T
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When |#]| > 1 we can use (59), (60) and (62) to obtain, correct the lowest order in |£|~1,
() ()
v) Ve G

1
K\* B iy 1
(g) KT %(1+T)|ﬂT|%€7}"

v KT

Therefore the solution of (2) in the form (63) which belongs to the Ekman root m,, has a
very much smaller tangential magnetic field than the solution which belongs to the mag-
netic boundary layer root m,,. The tangential magnetic field is nearly constant in the
Ekman layer, but varies in the magnetic boundary layer. Physically, this constancy in the
Ekman layer is a result of that layer’s thinness; it cannot carry enough current to alter
b appreciably. More precisely, in a period 27/|w| ohmic decay will eliminate any feature
of b with length scales as short as the thickness of the Ekman layer.

It follows that when |#] > 1 we can carry out our discussion of b as if the fluid were
non-viscous and slipped freely past the boundary. We examine first the limiting case
k = 0, when the magnetic boundary layer is infinitely thick. Roberts & Scott (1965)
observe that a discontinuity in i X B at 9V, the boundary of the perfectly conducting fluid,
requires a surface current in V. As long as fi. B 4 0, there will be a tangential Lorentz
force per unit area on this current. Since the fluid is free to slip at the boundary, there is
nothing to balance this Lorentz force, so in fact the fluid must move in such a way as
never to produce it. That is, the fluid must move so as to make 1 x B continuous across
the boundary.

We agree with these remarks of Roberts and Scott but do not believe they imply that
n x B is the same just outside the core as at the top of the free stream. Consider the simplest
case, a non-rotating, perfectly conducting fluid. The potential discrepancy between o x B
just inside and just outside dV is resolved, as Roberts and Scott point out, by the generation
of an Alfvén wave at the boundary, which propagates into the fluid. If we consider a gross
fluid motion with length scale L and period 27/|w|, this Alfvén wave has wavelength

Ay = 2nd/|v|.

Its amplitude is given approximately by (3). If we fix v, L;, and the real physical fluid
velocity Av(0), and consider configurations in which fi.B and 4 become smaller and
smaller, then the amplitude of the displacement s produced by these waves will decrease

with 4 as follows: A, A
|s| ~ é;]b(O)I ~ ETEI'AV(O)L

As 1. B and 4 approach zero, the Alfvén waves continue to propagate from JV throughout
the whole fluid volume V, but their wavelength A, and their amplitude |s| decrease
linearly with 4. In the limit when fi. B = 0 on all of 9V, no Alfvén waves are generated
at dV by the potential discontinuity in fi X B, so it can become a real discontinuity. Then
there is a surface current in JV, but the Lorentz force on it is normal to JdV, because
n.B = 0. Such a surface stress can be balanced by pressure gradients and gross accelera-
tion of the fluid.

If i. B on V is so small that 1, < L, the fluid will be permeated by very short Alfvén
waves of very small amplitude. If we consider velocities and magnetic fields averaged over
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regions whose smallest dimension is many times A,, then presumably to first order in
A,/L these small Alfvén waves will have no magnetic or dynamic effects. Their only
function will be to make fi x B continuous at . At higher orders in (1,/L), their radia-
tion pressure will transfer momentum and they will extract energy from the large-scale
flow. For example, conceivably they could be an important mechanism for damping the
self-gravitational oscillations of some magnetic stars.

If we start with a free-stream motion in which i. B = 0, and add a small fi. B, so that
A, <€ L, the averaged motion, averaged over scales much larger than A, will still be the
original free-stream motion, and will have a discontinuity in i x B at V. If ii. B becomes
so large that A, is comparable with L, then fi. B will have appreciable dynamic effects
on the free-stream motion, and fi x B will indeed be continuous across ¥ in the free-stream
motion.

If the system is rotating, the two polarized Alfvén waves become two Alfvén-inertial
waves with two different wavelengths. The foregoing discussion then remains valid if
A, is replaced by the larger of these two wavelengths.

The only effect of adding a small magnetic diffusivity « is to damp the Alfvén waves
slightly as they propagate into the fluid.

When A, (or, in rotating systems, the longest Alfvén-inertial wavelength) becomes
comparable with L, so that fi. B is strong enough to have gross dynamic effects on the
large-scale fluid motion, we can no longer speak of a magnetic boundary layer. It is still
possible, however, for the Ekman layers to be much thinner than L, and for L?/|w|« to
be so large that the free stream motion outside the Ekman layer behaves as if the fluid
were a perfect conductor. This is the regime of parameters which Roberts and Scott appear
to have had in mind. They take the boundary layer to be the Ekman layer alone, and re-
gard the magnetic boundary layer as part of the free stream. As we have already seen in
§ 3, our present information about 4 appears to indicate that this regime is not appropriate
to the Earth’s core.

Incidentally, the foregoing arguments suggest that we need not require

(n,)"1 < (L

in order to use the boundary layer theory. All we need is that 2w|n,,|™! < {L. Then
even if the Alfvén inertial waves do not damp out as they propagate into the fluid their
effects on the free stream are small. In the earth’s core, the second condition is more de-
manding than the first.

This work has been supported in part by the U.S. National Science Foundation under
grant NSF-GP-4096.
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